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A digital camera makes it possible to record and import images of natural and man-made
systems and objects into a computer.  Once there, mathematical software enables students
to analyze and model features of the image and, thus, the underlying structure and phys-
ics of the phenomena captured by the image.  Digital technology can be easily integrated
into the classroom in a manner that allows students to focus their energy on doing
mathematics.  The following explorations describe how this technology can be used in a
calculus classroom to motivate students’ learning of mathematics.

Finding the Volume of a Bowl

This exploration can be used when
studying “Volumes of Revolution”.
Find a symmetrically shaped object and
photograph it.  In this example, we
photographed a stainless steel mixing
bowl.  Download the image to your
computer and paste the image on top of
a pair of coordinate axes.  We included
a ruler in the picture and scaled the axes
to match the inch increments on the
ruler.  In this way, the volume of the
bowl can be computed in cubic inches.
Ask your students to find a mathemati-
cal function that models the shape of the
bowl and use it to estimate the volume
of the bowl.  The curve fitting the bowl
shown in Figure 1 is the piecewise
function

Figure 1  Finding the Volume of a Bowl

f (x) =
2.7 x3 if x ≤ 0.4

0.19x3 −1.1x2 + 2.2x +1.3 if 0.4 < x < 1.93

0.02x + 2.8 if 1.93 ≤ x ≤ 3.75

 

 
 

  

Students can use the disc method to calculate the volume of the bowl by computing the

integral V = 2π [ f (x)]2dx
0

3.75

∫  = 80.408 cubic inches = 1317.6 cc (ml).  In this example, the

thickness of the bowl is negligible and can be ignored.  To build confidence in students
with the disk method, you can have them check the accuracy of their volume calculation
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by filling the bowl with water and then pouring the water into a calibrated beaker (bor-
rowed from the Chemistry Department).  Before students can check their answer, they
must convert their measurements to a common unit of measurement, in this case, we used
cubic centimeters (cc) or equivalently milliliters (ml).  The measured volume of the bowl
was 1321 cc (ml) which is very close to the computed volume.

Modeling the Trajectory of Water from a Hose

For this exploration, you need to take a picture of a stream of water shooting out of a gar-
den hose pointing at an upward angle.  Care must be taken so that the pointing direction
of the camera is perpendicular to the plane of the arc of water.  You should also include a
meter (yard) stick in the picture to serve as a reference of scale.  After the picture is im-
ported into the computer, you can paste the image on top of a pair of coordinate axes.

The objective of this exploration is to have your students use the equations of motion and
parametric equations to trace the trajectory of the water.  In this example, distances are
measured in feet, velocity is measured in feet per second, and the standard (no external
forces except gravity) parametric equations of motion are

x(t) = x0 + v0 cos( )t , y(t) = y0 + v0 sin( )t − (1/2)gt2 .

Students need to determine the values of the parameters x0 , y0 , v0 , and  that will draw

the pictured trajectory for the water.  The values of x0 , y0 , and  can be easily approxi-
mated from the picture by us-
ing TEMATH’s Point tool and
Line tool.  Students can esti-
mate v0  by trial and error.
Using the picture shown in
Figure 2, the horizontal dis-
tances of the streams of water
predicted by the standard
equations of motion were al-
ways greater than the observed
distances.  This phenomenon
leads to a discussion with the
students as to why this is so.
Hopefully, some students will
suggest that when the picture
was taken, a wind was blowing
in the negative x direction pro-
viding an external force in that
direction causing the horizontal Figure 2  Trajectory of Water from a Hose
distance of the water to be shortened.  Using Newton’s second law of motion, it can be
shown that a term proportional to t2  needs to be added to the x(t)  equation of motion,
that is, x(t) = x0 + v0 cos( )t − (1/2)awt2 .  Again, students can estimate the wind accel-
eration parameter aw  by trial and error.  The parametric equations that were used for the
fit shown in Figure 2 are

x(t) = 0.4 +11cos(1.03)t − 0.9t2 , y(t) = 0.92 + 11sin(1.03)t −16t2 .
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Modeling Magnetic Field Patterns of Bar Magnets

Here is an experiment for a first course in differential equations.  For this experiment, a
collection of disk and bar magnets (or a strong horseshoe magnet), iron filings and a sheet
of stiff paper are needed.  The collection of disk and bar magnets are arranged to form a
strong horseshoe magnet and the sheet of paper is placed over the magnet’s two poles.
Iron filings are sprinkled over the paper and the resulting pattern is then photographed.

Figure 3  The Magnetic Field (curves through poles) of a Horseshoe Magnet

The objective is to compare the observed field patterns with those produced by inverse
power law models for the field lines and find the model that best fits the observed phe-
nomena.  For example, the constant force curves of the horseshoe magnet (the circular
curves around each pole in Figure 3) are assumed to be of the form

(E1) k = (x + c,y)
− n

− (x − c, y)
−n

where (a,b) = a2 + b2  and the magnet’s poles are located at (±c,0) .  Thus, we are as-
suming that a horseshoe magnet’s field can be modeled by two “point monopoles”.  Us-
ing implicit differentiation on E1, we find

(E2)
dy
dx

=
(x + c) (x − c,y)

n +2 − (x − c) (x + c,y)
n +2

y (x + c, y)
n+ 2

− (x − c, y)
n +2( ) = F(x,y)
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Since the magnet field lines (curves passing through the poles in Figure 3) are orthogonal
to the constant force curves, they can be found by using TEMATH’s differential equation
solver to plot the solutions of dy dx = −1/ F(x, y).  Based on a model of a magnet field
of a coil in Section 30-5 of Halliday-Resnick-Walker (see [3]) and the discussion of mag-
netic fields of a localized current distribution in Section 5.6 of J. D. Jackson [see 4], we
decided to try n = 3.  The close-up view (Figure 4) shows that the nearly straight magnet
field lines are orthogonal to the circular constant force curves and are approximately par-
allel to the iron filings.  In Figure 5, a
magnet field line through a fixed point
is plotted for each of the models
corresponding to n = 1, 2, 3, 4.
Figures 3-5 together provide
qualitative evidence that the model for
n = 3 is a plausible approximation to a
true model.  However, because of the
relatively large size of the iron filings,
the friction between the filings and the
paper, and the relatively crude method
of applying the filings by sprinkling
them onto the paper by hand, it would
be unwise to conclude more!

Figure 4  Zoomed View of the Magnet’s Field

Figure 5  Magnet Field Lines for n = 1, 2, 3, 4 (ordered from bottom to top)

Modeling the Thread of a Wood Screw

We used a 50x digital microscope connected to a computer to photograph a wood screw
(see Figure 6).  Though difficult, care was taken to hold the screw so that its long axis
was both horizontal and parallel to the microscope’s view plane.  Next, the x,y-projection

(x, y) = (t,R sin[
2π
P

(t + w)])

of the helix

(x, y,z) = ( t,Rsin[
2π
P

( t + w)],Rcos[
2π
P

(t + w)])

is used to model the screw’s thread.  The image was plotted over 0 ≤ x ≤ 2, −1≤ y ≤ 1.
Thus, the units in both directions are the same.  Using TEMATH’s Line Tool, it is easy to
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determine a value of R (the radius of the screw) and a value of P (the distance between
successive turns of the thread), and w (the horizontal shift).  In this case, we found that
R = 0.89, P = 0.75, and w = 0.135.

Figure 6  Model of a Wood Screw Thread

TEMATH (Tools for Exploring Mathematics)
TEMATH (Tools for Exploring Mathematics) is a mathematics exploration environment
useful for investigating a broad range of mathematical problems. It is effective for solv-
ing problems in pre-calculus, calculus, differential equations, linear algebra, numerical
analysis, and math modeling.  TEMATH contains a powerful grapher, a matrix calcula-
tor, an expression calculator, a differential equation solver, a facility for handling and
manipulating data, numerical mathematical tools, and visual and dynamic exploration
tools.  TEMATH requires an Apple Macintosh computer (post MacPlus; PowerPC even
better) running MAC OS 7.5-9.1, a 12" or larger monitor screen, 3 MB of free RAM, and
2MB of disk space (for TEMATH plus its support files).  You can download a copy of
TEMATH and its documentation, application files, and games from:

www2.umassd.edu/TEMATH
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More Explorations

Estimating the Volume of Glass Needed to Make a Light Bulb

This exploration can be used when
you’re presenting the theory for the
“area of a surface of revolution” in your
calculus class.  Motivate your students
by asking them, “How much glass is
needed to make a light bulb?”  Once you
have your students thinking about the
problem, use a digital camera to take a
picture of a light bulb taking care not to
distort the perspective — you need an
accurate image of the projected 2D
shape of the bulb.  Include a ruler in the
picture so that accurate measurements
can be made from the picture.  After the
image is downloaded into the computer,
ask your students to find a mathematical
expression for a curve that fits the shape
of the upper half of the bulb — this will
usually be a piecewise function.  Stu-
dents can check the accuracy of the
curve by plotting it on top of the image.
It will probably take several tries to find
a suitable mathematical function that fits
the shape of the bulb.  Using this function, students can find the surface area of the glass
part of the bulb.  In order to estimate the volume of glass needed to make the bulb, you
need to measure the thickness of the glass.  To do this, you must carefully break a bulb,
borrow a micrometer (from the Physics Department) and use it to measure the thickness
of a piece of glass from the broken bulb.  Using the calculated surface area of the bulb
and the measured thickness of the glass, students can estimate the volume of glass in the
light bulb.  In a particular example that we tried, the function fit to the shape of the bulb
was

f (x) =
0.1x3 − 0.135x2 + 0.075x + 0.521 if 0.58 ≤ x ≤ 2

1.182 −(x − 2.72)2 if 2 < x < 3.9

 
 
 

To build students’ confidence in the model, you can have them compute the arc length
around the top and bottom of the bulb and compare it to the “real” arc length of the bulb
measured with a flexible cloth tape measure.  In our case, the computed arc length was
8.23 inches and the measured arc length was 8.25 inches — a good confidence builder
indeed!  Using f (x)  to compute the surface area, we obtained

S(x) = 2π f(x) 1 +[ ′ f (x)]2

0.58

3.9

∫ dx = 20.3 square inches

The measured thickness of the glass of the bulb was 0.024 inch and the approximate vol-
ume of glass needed to make the bulb was 20.3 ×  0.024 =  0.4872  cubic inches.
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Modeling the Exponential Growth of a Tibia Curta Shell

Nature provides many wonderful opportunities to use mathematics to model the physical
characteristics of a living organism.  The goal of this exploration is to model the growth
of a Tibia Curta shell.  TEMATH’s Line tool was used to measure the lengths of the cy-
lindrical growth segments of the shell.  To give a frame of reference for the measure-
ments, we first drew a line across the center of the entire shell and then measured the
lengths of the spirals along this line (see Figure 8).  The measurements were entered into
a data table and plotted.  Noting that the plotted data looked exponential, TEMATH’s
Least Squares Exponential Fit tool was used to find the exponential fit

f (x) = 0.113536951917 e1.93526432846 x

y

x0
0

1.25

1.25

Figure 8  Exponential Growth of a Shell
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Modeling the Spiral of a Chambered Nautilus Shell

Polar coordinates can be used to model the spiral structures found in many shells, in par-
ticular, the Chambered Nautilus.  We used a digital camera to take a picture of a Cham-
bered Nautilus shell, imported the image into a computer, and copied it into TEMATH’s
Polar Plot Mode.  Using TEMATH’s Point tool, we sampled points along the shell’s spi-
ral at intervals of /4 radians (see Figure 9).  Next, we created a table of values for these
points, found the least squares exponential fit r =0.0693867881740e 0.169139870975t  using

    

r
5

0
0 30

t

Figure 9  Nautilus Shell Data Sampling Figure 10  Least Squares Exponential Fit

rectangular coordinates (see Figure 10), and overlaid the polar plot of the fit on top of the
image of the shell (see Figure 11).  The fit is excellent!  Real-life applications truly make
our students appreciate the modeling potential of mathematical functions.

Figure 11  Nautilus Shell Spiral Fit
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Modeling the Shape of Leaves with Polar Curves

Many leaves in nature are symmetric in shape and can be easily modeled by mathemati-
cal functions.  In this example, the leaf reminded us of a cardiod so we tried polar equa-
tions to model the leaf.  We quickly observed that the standard cardiod equations did not
accurately model the leaf.  We then sampled data points along the top edge of the leaf
from t = 0 to t =2.25 radians and fit the resulting data with an eighth degree polynomial
using the technique of least squares.  From t =2.25 to t =  radians, the leaf turns back in
on itself, and, thus, can not be modeled by a single function.  Since we wanted a single
piecewise function to model the leaf, we decided to extend the polynomial to the pole
(2.25 ≤ t ≤ 2.36 ) and set r(t) = 0 on the remaining part of the interval.  The bottom half of
the leaf was modeled by a reflection of the top half curve.  The final piecewise curve fit
we obtained is given by

r(t) =
p(t) if 0 ≤ t ≤ 2.36

0 if 2.36 < t ≤ 2π -2.36

p(2π - t) if 2π -2.36< t ≤ 2π

 
 
 

  

where

p(t) = −1.12t8 +10.04t 7 − 37.07t6 + 72.29t5 − 79.63t4 + 48.79t3 −14.6t2 − 0.180t + 4.46

Figure 12  Modeling the Shape of Leaf with a Polar Curve
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Using Vectors to Model a Starfish

This example provides a practice environment for students to use vectors to measure the
angle between the “arms” of a starfish.  TEMATH’s Line tool is used to draw lines from
the origin to the centers of the ends of the arms.  The Point tool is then used to place a
point at this center position and record the coordinates of the two points.  This gives the
position coordinates of the vectors.  In this example, the two vectors are

  
r 
v 1 = 〈3.08, 1.08〉  and   

r 
v 2 = 〈2.04, -2.66〉

If  is the angle between the two vectors, then

  
cos( ) =

r 
v 1 •

r 
v 2r 

v 1
r 
v 2

= 0.3117

So the angle between the two vectors (and the two arms of the starfish) is

= cos−1 (0.3117)=1.2538   (or 71.84˚)

For a perfectly symmetrical five-armed starfish, the angle between the arms would be
72˚.

Figure 13  Using Vectors to Model a Starfish
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Using Torricelli’s Law to Model the Water Discharge from a Hole in a Bottle

For this experiment, we obtained a plastic bottle, drilled five holes into the bottle (3/16 in.
in diameter), filled the bottle with water, and used our digital camera to record the out-
flow of the water through the holes.  Rulers were placed both horizontally and vertically
in the picture to ensure that the picture was not distorted and that the axes could be scaled
properly.  The goal of this experiment is to verify Torricelli’s law that the velocity of the
water leaving the hole of a bottle is given by v = 2gh , where h is the height of the water

above the hole.  Since H − h =
1

2
gt2 , the horizontal distance of the water flow from the

hole is x = vt = 2gh
2(H − h)

g
= 2 h(H − h) .  We used TEMATH’s Point tool to

measure H, h for the five holes, and x for the five outflows of water.  When we tried fit-
ting Torricelli’s model to the data measured from the picture shown in Figure 14, Tor-
ricelli’s law always predicted greater horizontal distances.

h

H

x

Figure 14  Using Torricelli’s Law

We then realized that Torricelli’s law is for nonviscous ideal fluids.  Upon consultation
with a Mechanical Engineering colleague, we adjusted the model for the jet contraction at
the hole and the orifice discharge coefficient.  These modifications to the velocity model
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give v = cccv 2gh , where cc  is the contraction coefficient and cv  is the discharge coeffi-
cient.  This model fit the data better, but it still wasn’t a good fit.  We were still missing
something.  Studying Bernoulli’s equations led us to include another term in the model to
compensate for the difference in pressures at the hole and the top of the bottle.  Our final
model was

x = 2c ccv (h − p)(H − h)

where p is the constant that models the pressure effect.  This modified model fits the data
well (see Figure 14).

The measured data for the height h of the water above the hole and horizontal distance x
traveled by the water are given in the following table:

h (inches) x (inches)

1.7696 7.9896

3.0968 11.4656

4.3608 13.7408

5.6880 15.1312

6.9520 16.0792

If you have any suggestions for a better model, please contact us.


